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Abstract— Smartphone-based Human Activity Recognition (SHAR) applications better performs if implemented in an online manner on 
continuous data streams. The selection of learning approaches highly impacts the performance of SHAR applications regarding key cost 
criteria such as: energy, memory and time efficiency. Stream learning is performed to achieve multiple objectives which include enhance-
ments of the internal structures of learning models and their processing behavior. SHAR application enhancements include concept drift 
detection, tackling class imbalance from uncertain data streams, model personalization and optimization. In this paper, our goal is to pre-
sent an overview of data stream characteristics; baseline learning algorithms, as well as evaluation approaches and metrics that can be 
used for online stream learning in the context of SHAR. We also present existing applications that fulfill the stream learning requirements 
as well as the most popular open source frameworks.   

Index Terms—Human activity recognition, smartphone, stream learning, evolving streams.   

——————————      —————————— 

1 INTRODUCTION                                                                     
martphone-based Human Activity Recognition (SHAR)  
involves the use of different mobile embedded sensors 
available on modern mobile phones. It also involves Ma-

chine Learning (ML) techniques to automatically collect and 
infer user activities for different domains such as healthcare 
monitoring, assisted living for elderly, sports and wellbeing 
applications. In the supervised learning approach, the classi-
fier usually need to be trained offline first (in desktop PCs, 
servers, or cloud systems) using labeled data, before online 
implementation where the trained model classifies each block 
of incoming data as one of the targeted activities within a 
small time window. This is made possible because data col-
lected from sensors are provided in a time-series manner (data 
streams).  

Typical SHAR approaches are based on static data scenario 
and assume that data arrives in form of batches and must be 
processed after such blocks become available. Batch mode 
offers better robustness to local fluctuations of the stream and 
a broader outlook on the incoming data [1]. However, increas-
ing attention is being paid to tackling SHAR problem from 
online streaming perspective. In online streaming mode, in-
coming samples are processed one by one and the classifica-
tion system is modified and adapted accordingly to the cur-
rent state of the stream. This is made possible by making the 
recent samples more important during the update process. 
This approach is therefore more vulnerable to local fluctua-
tions, but on the other hand allows for mining the stream on-
the-fly. Moreover, it can employ additional mechanism for 
drift detection and adaption [1]. From the SHAR perspective, 
the online mode is more suitable than the batch one, as no 
delay in the decision making process is allowed, especially in 
sensitive cases such as assisted or elderly supervision [1]. 
Therefore, incoming data must be classified and the learning 
model adapted in real-time. Until recently, online stream 

learning inside mobile environments has been a challenging 
task for ML techniques considering the limited resources as 
well as time constraints. The benefit of the online streaming 
approach is that the training samples do not need to be stored 
on the phone nor scanned more than one time as they arrive 
[2]. The main challenges are as follows: 

1. Limited computational and memory resources, as well 
as tight needs to make predictions in reasonable time.  

2. Evolving nature of data streams, i.e., the distribution of 
data and target concepts can change over time. This 
could dramatically deteriorate performance of the used 
model. 

3. One scan of incoming objects, i.e., the fact that data el-
ements cannot be accessed multiple times as the new 
example is immediately discarded, which allows to 
process high speed data streams. 

4. The training procedure can be stopped at any time and 
the prediction performance should not be worse than 
the one obtained in batch mode. 

These challenges pose the need for different algorithms than 
those used for classical batch learning where data are stored in 
finite and persistent data repositories, or those used for incre-
mental learning, as they do not focus on computational re-
strictions and do not consider dynamic changes [2]. To tackle 
these challenges, several algorithms have been introduced in 
the literature.  

In the present paper, we present an overview of the main 
basic algorithms that can be used for online learning in the 
context of SHAR applications. The remaining of the paper is as 
follows: In section 2 we describe characteristics and issues of 
data streams. Section 3 presents the main baseline algorithms 
used in online supervised stream classification. In section 4, 
we list evaluation metrics commonly used in stream learning. 
Section 5 summarizes existing applications in the context of 
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SHAR. Popular open source frameworks are briefly intro-
duced in section 6 before concluding in section 7.  

2  HAR DATA STREAM CHARACTERISTICS 
2.1 Supervised Learning Framework  
In SHAR applications, massive volumes of data are continu-
ously generated in the form of data streams. These streams are 
potentially unbounded, ordered sequences of items which 
arrive at constant or variable sampling rates.  

SHAR applications use different learning models based on 
supervised, unsupervised, semi-supervised and deep learning 
approaches. We focus in the present paper on the supervised 
learning models where the training data stream needs to be 
labeled so that learning model is able to predict the future 
similar data streams accurately. A data stream is the sequence 
of data instances (Xt, yt) as presented in Fig. 1, arriving one at a 
time drawn from an unknown probability distribution pt (X, 
y); for time t= 1,2,3,...,T. where X is the set of attributes and y is 
the corresponding class label. We assume that an online classi-
fier F receives the new input Xt at time step t and then predicts 
its class label. After some time, actual class label yt is available 
and is used by F to evaluate the predictive performance and to 
provide additional information for training update. This 
whole process will be repeated at following time steps. This 
technique is used by most of supervised classification algo-
rithms.  

 
 
 
 
 
 

Fig. 1 Online stream processing [4] 

Three different ways of annotating data streams exist: 
manual, automatic, and observational. The manual labeling 
process of each chunk of the data stream is quite laborious and 
time-consuming. Automatic labeling is performed through 
application configuration at the time of data collection. There-
fore, automatic labeling is more comfortable compared to 
manual approach. In the observational method, the learning 
models are initially trained in automatic settings, however in 
the case of discrepancies users are allowed to intervene by 
manually labeling the data streams [5].  

2.2 Concept Drifts 
As data evolves over time, the concept about which data is 
collected may change. This phenomenon is called Concept 
Drift [6]. In the presence of drifts, the fundamental paradigm 
of traditional data mining does not hold anymore since it as-
sumes a static and unknown distribution of training and test-
ing samples. Therefore, it is crucial to monitor the appearing 
concept drifts in order to adapt the model to the changes ac-
cordingly. Moreover, an important characteristic of concept 
drift relates to the rate at which it happens. The rate of a drift 
can be sudden or gradual. The first type of drift occurs when a 
source distribution of data stream is suddenly replaced by 

another source distribution. The later type of drift is associated 
with slower rate of changes in data streams [4]. Multiple algo-
rithms have been proposed for dealing with concept drifts in 
data streams as we will see in section 3.  

2.3 Class Imbalance 
Class imbalance occurs when some target classes are not 
equally represented. The difficulty in learning from imbal-
anced data is that the under-represented class cannot draw 
equal attention to the learning algorithm. This can often cause 
learning bias towards the highly-represented class, inducing 
poor generalization for future prediction [3]. Since human 
activities are generally imbalanced, learning difficulty in the 
context of SHAR is certainly increased. On the other side, class 
imbalance has attracted growing attention in data stream 
learning in recent years and different algorithms have been 
introduced to tackle this problem [3].  

3. STREAM LEARNING ALGORITHMS  
Two basic models of data streams exist: stationary, where 
examples are drawn from a fixed although unknown probabil-
ity distribution, and non-stationary, where data can evolve 
over time.  Nonetheless, two distinct approaches exist in re-
search works: Active approaches which trigger changes in 
classifiers when drifts are detected; and passive approaches 
which continuously update the classifier regardless of appear-
ing drifts occurring in the data stream [4]. 

3.1 Stationary Stream Learning 

3.1.1 Hoeffding Tree  
Hulten and Domingos [7] proposed the Hoeffding Tree (HT) 
algorithm presented in Fig. 2. They also refer to their imple-
mentation as VFDT, a Very Fast Decision Tree learner. In that 
paper, the HT is the basic theoretical algorithm, while VFDT 
introduces several enhancements for practical implementa-
tion. The HT novelty consisted of waiting for new instances to 
arrive instead of reusing instances as it is the case for batch 
learning approaches. The crucial decision needed to construct 
a decision tree is when to split a node, and with which exam-
ple-discriminating test.  

The most popular criteria for selecting decision tree split 
tests is ‘information gain’ (G), which measures the average 
amount of ‘purity’ that is gained in each subset of a split [8]. 
The strength of the HT method is that it has theoretical proofs 
guaranteeing that HT algorithm can build trees of the same 
quality as batch learned trees, if the number of instances need-
ed at a node when selecting a splitting attribute, is sufficient 
enough. The name of this algorithm is derived from the 
hoeffding bound, which states that with probability 1−δ, the 
true mean of a random variable of range R will not differ from 
the estimated mean after n independent observations by more 
than ε, as defined in (1) [8]:  
 
 
 
 
 
This bound justifies that a small sample can often be enough 

∈= �𝑅
2𝑙𝑛(1/δ)

2𝑛
 (1) 
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to choose an optimal splitting attribute. For any given potenti 
al split, HT checks whether the difference of averaged infor-
mation gains of the top two attributes is likely to have a posi-
tive mean—if so, the winning attribute may be picked with a 
certain degree of confidence. Thus the HT algorithm can deter- 
  

 

 

 

 

 

 

 

 

 
 

Fig. 2. Hoeffding Tree algorithm 

-mine, with high probability, the smallest number n of exam-
ples needed.  Moreover, HT contributes in solving the uncer-
tainty in learning time since it consumes constant time per 
instance.   

3.1.2 Very Fast Decision Trees (VFDT)  
Domingos et al. [7] modified the HT algorithm with an im-
proved method called VFDT, with the following characteris-
tics [9]:  

1. Ties: when two attributes have similar split gain, the 
improved method splits if the Hoeffding bound com-
puted is lower than a certain threshold parameter τ.  

2. Speed: instead of computing the best attributes to split 
every time a new instance arrives, it computes them 
every time a number nmin of instances has arrived.  

3. Memory utilization: it deactivates the least promising 
nodes at the time of low memory and drops the poor 
splitting attributes.   

HT can grow slowly and performance can be poor initially, so 
this extension provides an immediate boost to the learning 
curve [9]. Although not suitable to handle drifts, HT or VFDT 
are used as a base for many state-of-the-art drift learners. En-
hancements to the basic VFDT algorithm include methods of 
limiting memory usage, the use of alternative bounds which 
requires less examples for each split node, approaches to deal-
ing with numerical attributes, pruning mechanisms, and the 
use of sliding windows or drift detectors to adapt the algo-
rithm to non-stationary settings [4]. 

3.2 Evolving Stream Learning  
Most stream classification algorithms are capable of predict-
ing, detecting, and adapting to concept drifts. Drift adaptation 
algorithms generally require data management and forgetting 
mechanisms in order to deal with time-changing streams, so 

that they are relevant to the most recent data. This usually 
takes the form of a sliding window that forgets older examples 
or a fading factor that decays the weight of older examples [4].  

3.2.1 Concept-adapting Very Fast Decision Trees (CVFDT)  
Hulten, Spencer, and Domingos [10] tackled the problem of 
drift adaptation with an algorithm called Concept-adapting 
Very Fast Decision Tree (CVFDT). CVFDT uses a sliding win-
dow system over VFDT. Unlike traditional batch learning, it 
does not construct a new model each time from the beginning. 
After a fixed number of new instances arrive, the relevant 
statistics at every node are updated; and the Hoeffding 
bounds are recomputed [11]. If the concept is changing, a bet-
ter splitting attribute is found as it has a higher gain and then 
a new subtree is learned. The algorithm then waits for more 
instances in order to confirm that the new learned subtree is of 
better quality than the original one, which is then replaced 
[11]. This technique is dependent on the window size. The size 
should be neither too small, in order to store enough examples 
to construct an accurate model, nor too large, in order to rep-
resent the concept accurately and continuously. 

3.2.2 Hoeffding Adaptive Tree (HAT)  
The Hoeffding Adaptive Tree (HAT) is an adaptive extension 
to the HT that has theoretical guarantees and uses the ADWIN 
algorithm [12] as a change detector and error estimator. 
ADWIN is parameter- and assumption-free in the sense that it 
automatically detects and adapts to the current rate of change. 
Especially, ADWIN keeps a variable length window of length 
W, but does not maintain the window explicitly; instead it 
compresses it using only O(logW ) memory and O(logW ) 
processing time per item, rather than the O(W) expected from 
a naive implementation [12]. It is therefore interesting to know 
the main contributions of HAT with respect to CVFDT such 
as: 1) The alternate trees are created as soon as change is de-
tected, without having to wait after the change, for a fixed 
number of new examples; 2) HAT replaces the old trees by the 
new alternate trees as soon as there is evidence that they are 
more accurate [12]. 
It can be said that the HAT adapts to the scale of time change 
in the data, rather than having to rely on the a priori guesses 
made by the user. In the case of noisy distributions with outli-
ers, the HAT and CVFDT will not fluctuate abruptly, since 
they compute mean values that helps to smooth the computa-
tion [12].  

3.2.3 Incremental Algorithms  
Several traditional incremental classifiers were also adapted to 
concept drift requirements. Sliding windows are usually em-
ployed as a forgetting mechanism. For example, the k Nearest 
Neighbors (kNN) algorithms are naturally transformed to 
incremental versions for use in the streaming case with differ-
ent techniques for selecting the limited subset of the most 
useful examples for accurate predictions. The kNN classifier is 
updated when concept drift is detected by discarding obsolete 
examples from the knowledge base [2]. Neural Networks can 
also be adapted to evolving data streams by dropping the 
epoch protocol and presenting examples in one pass [2]. Other 
algorithms use a structure similar to a decision tree to create 
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rule-specific drift detectors [2]. 

3.2.4 Tackling Class Imbalance and Concept Drift 
Simultaneously 

Few works handling concept drift in class-imbalanced data 
streams exist in the literature. Actually, most existing concept 
drift detection methods are only designed for balanced data 
streams. Since data streams in SHAR application scenario 
naturally exhibit both phenomenons, we mention here a recent 
interesting systematic study that tackles the combined chal-
lenge of concept drift in class-imbalanced data streams [3]. 
Authors assume that most existing papers that proposed new 
concept drift detection methods for imbalanced data did not 
consider the effect of class imbalance techniques on final pre-
diction and concept drift detection. In their paper, they pro-
vided a thorough review and an experimental insight into this 
problem. Based on the analysis, general guidelines are pro-
posed for the development of an effective algorithm such as:  

1. Is the class imbalance technique effective in predicting 
minority-class as well as adaptive to class imbalance 
changes?  

2. Is the detection performance of the concept drift tech-
nique affected by the class imbalance technique?  

3. How to make the class imbalance technique and con-
cept drift technique work together to achieve better 
online prediction. 

4 EVALUATION IN DATA STREAM 
The data stream classification of SHAR performance is usually 
assessed using evaluation measures identical to static super-
vised classification such as accuracy and F1-score. However, 
unlike batch learning mode, repeated runs to estimate these 
measures over the streaming data are not possible because of 
the time and resource constraints. During stream classifica-
tion, the time required to process individual instances and the 
average memory usage should be kept constant. For this rea-
son, training and testing time along with model memory size 
have to be periodically monitored.  

4.1 Holdout Evaluation  
With no concept drift assumption, a single static held out set 
should be sufficient for performance estimation as long as it is 
independent and sufficiently large relative to the complexity 
of the target concept. Test set sizes on the order of tens of 
thousands of examples have previously been considered suffi-
cient [8]. To track model performance over time, the model 
can be evaluated periodically, for example, after every one 
million training examples. Therefore, periodic holdout method 
gives a more accurate estimation of the accuracy on more re-
cent data.   However, testing the model too often may signifi-
cantly slow the evaluation process, depending on the size of 
the test set [8].  

4.2 Prequential Evaluation  
An alternate scheme of estimating the performance of stream 
classifiers involves interleaving testing with training. Each 
individual example is first used to test the classifier before it is 
used for training (Fig. 1). Interleave train and test, also re-
ferred to as prequential (combination of words predictive and 

sequential), follows the online learning protocol, where data 
are evaluated as they are collected [8]. Whenever an example 
is observed, the current model makes a prediction; when the 
system receives feedback from the environment, the loss func-
tion can be computed. Such a procedure highlights the current 
rather than overall performance, because simply calculating a 
cumulative measure over the entire stream may lead to strong-
ly biased results and thus, may not detect appearing drifts in 
the stream.  

4.3 Evaluation Metrics 
Below we list the most popular existing performance metrics. 
Most of them should be selected and monitored during evalu-
ation of data stream classification depending on the data 
stream characteristics:  

1. Accuracy: the proportion of all correct predictions to 
the total number of examples. Prequential accuracy is 
popularly used with supervised learning. 

2. G-Mean: the geometric mean of sensitivity and specific-
ity is often applied on class-imbalanced data streams to 
avoid the bias of the overall accuracy.  

3. Kappa Statistic: K = p0−pc/1−pc, where p0 is the classifi-
cation accuracy and pc is the probability of a random 
classifier making a correct prediction.  

4. Generalized Kappa Statistics: such as Kappa M for 
dealing with imbalanced data streams. 

5. Prequential AUC: suitable for streams with skewed dis-
tributions.  

6. Memory consumption: the average memory require-
ments of each algorithm, and also their change over 
time.  

7. Update time: the amount of time that an algorithm re-
quires to update its structure and accommodate new 
data from the stream. In an ideal situation, the update 
time should be lower than the arrival time of a new. 

8. Decision time: the amount of time that a model needs 
to make a decision regarding new instances from the 
stream. This phase usually comes before the updating 
procedure takes place.  

9. RAM hours: indicating processing time and memory 
measured in a single metric. 

5 ONLINE SHAR APPLICATIONS  
5.1 MARS  
MARS was the first SHAR system where the classifier is built 
on the mobile device itself [13]. MARS processes the data 
stream generated from accelerometer sensor and provides 
personalization of learning models that are built based on 
individual annotated data for certain physical activities. In-
cremental Naive Bayes is used to update an anytime model in 
order to accommodate changes in the data stream.  

5.2 Star  
Star is an adaptive stream learning framework for SHAR [14]. 
It proposes an active learning technique well suited for choos-
ing only a small amount of data to be labeled. Then the system 
is further refined with the selected true labeled data. Addi-
tionally, the framework uses incremental learning approach to 
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handle concept drift over evolving streaming data in order to 
fit a particular user or context. Star performs activity recogni-
tion over sliding windows using modeling components.  The 
experiments showed low computational cost and real time 
recognition. 

5.3 A2EL  
A novel online scheme, combining principles of Active and 
Adaptive Ensemble Learning (A2EL) for the context of SHAR 
is proposed in [1]. The system architecture uses a weighted 
Naïve Bayes classifier that can adapt to the incoming data of 
the stream without a need for an explicit concept drift detec-
tor. To tackle the multi-class nature of activity recognition 
problem, authors introduced a weighted combination for one-
vs-one decomposition to reconstruct the original multi-class 
problem from two-class outputs. Moreover, the proposed 
ensemble is enhanced with an active learning module to re-
duce the labeling cost over real-time senor data streams.  

6 OPEN SOURCE FRAMEWORKS 
Below we list the most two popular open source frameworks 
that provide tools for data stream analysis and learning: 

1. Massive Online Analysis (MOA) [15]: Related to the 
WEKA project [16], MOA is implemented in Java. It 
provides a collection of ML algorithms (e.g., classifica-
tion, clustering, outlier detection, and concept drift de-
tection) and evaluation methods (e.g., periodic holdout, 
test-then-train, and prequential). MOA also provides a 
benchmark suite of artificial data generators for the 
MOA stream mining community which is growing ac-
tively. MOA can be found at 
https://github.com/Waikato/moa. 

2. Scalable Advanced Massive Online Analysis (SAMOA) 
[17]: described as a framework as well as a library, it 
combines stream mining and distributed computing for 
big data streams. It features a pluggable architecture 
that allows it to run on several distributed stream pro-
cessing engines. Like MOA, SAMOA is written in Java 
and supports the most common machine learning tasks 
such as classification and clustering. SAMOA can be 
found at http://www.samoa-project.net/. 

7 CONCLUSION 
In essence, SHAR applications need to perform online learning 
and classification on continuous data streams. The selection of 
learning approaches highly impacts the performance of SHAR 
applications regarding key cost criteria such as: energy, 
memory and time efficiency. Online learning in the context of 
SHAR must be performed to achieve multiple objectives 
which include system level and application level performance 
enhancements. The system level performance objectives in-
clude battery life enhancements in mobile devices. The appli-
cation level performance objectives include enhancements of 
internal structures of learning models and their processing 
behavior in terms of concept drift detection, tackling class 
imbalance from uncertain data streams, model personalization 
and optimization. The availability of open source frameworks 

dedicated to big data stream online analysis should help fur-
ther developments in these challenging tasks.   
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