
International Journal of Scientific & Engineering Research Volume 9, Issue 8, August-2018 31
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

Online Stream Learning for Smartphone-based
Human Activity Recognition: An Overview

Ilham Amezzane1, Youssef Fakhri1, Mohamed El Aroussi1, Mohamed Bakhouya2

1 Ibn Tofail University, Kenitra, Morocco
2 International University of Rabat, Sala Aljadida, Morocco

Ilham.amezzane@uit.ac.ma

Abstract— Smartphone-based Human Activity Recognition (SHAR) applications better performs if implemented in an online manner on
continuous data streams. The selection of learning approaches highly impacts the performance of SHAR applications regarding key cost
criteria such as: energy, memory and time efficiency. Stream learning is performed to achieve multiple objectives which include enhance-
ments of the internal structures of learning models and their processing behavior. SHAR application enhancements include concept drift
detection, tackling class imbalance from uncertain data streams, model personalization and optimization. In this paper, our goal is to pre-
sent an overview of data stream characteristics; baseline learning algorithms, as well as evaluation approaches and metrics that can be
used for online stream learning in the context of SHAR. We also present existing applications that fulfill the stream learning requirements
as well as the most popular open source frameworks.

Index Terms—Human activity recognition, smartphone, stream learning, evolving streams.

—————————— ——————————

1 INTRODUCTION
martphone-based Human Activity Recognition (SHAR)
involves the use of different mobile embedded sensors
available on modern mobile phones. It also involves Ma-

chine Learning (ML) techniques to automatically collect and
infer user activities for different domains such as healthcare
monitoring, assisted living for elderly, sports and wellbeing
applications. In the supervised learning approach, the classi-
fier usually need to be trained offline first (in desktop PCs,
servers, or cloud systems) using labeled data, before online
implementation where the trained model classifies each block
of incoming data as one of the targeted activities within a
small time window. This is made possible because data col-
lected from sensors are provided in a time-series manner (data
streams).

Typical SHAR approaches are based on static data scenario
and assume that data arrives in form of batches and must be
processed after such blocks become available. Batch mode
offers better robustness to local fluctuations of the stream and
a broader outlook on the incoming data [1]. However, increas-
ing attention is being paid to tackling SHAR problem from
online streaming perspective. In online streaming mode, in-
coming samples are processed one by one and the classifica-
tion system is modified and adapted accordingly to the cur-
rent state of the stream. This is made possible by making the
recent samples more important during the update process.
This approach is therefore more vulnerable to local fluctua-
tions, but on the other hand allows for mining the stream on-
the-fly. Moreover, it can employ additional mechanism for
drift detection and adaption [1]. From the SHAR perspective,
the online mode is more suitable than the batch one, as no
delay in the decision making process is allowed, especially in
sensitive cases such as assisted or elderly supervision [1].
Therefore, incoming data must be classified and the learning
model adapted in real-time. Until recently, online stream

learning inside mobile environments has been a challenging
task for ML techniques considering the limited resources as
well as time constraints. The benefit of the online streaming
approach is that the training samples do not need to be stored
on the phone nor scanned more than one time as they arrive
[2]. The main challenges are as follows:

1. Limited computational and memory resources, as well
as tight needs to make predictions in reasonable time.

2. Evolving nature of data streams, i.e., the distribution of
data and target concepts can change over time. This
could dramatically deteriorate performance of the used
model.

3. One scan of incoming objects, i.e., the fact that data el-
ements cannot be accessed multiple times as the new
example is immediately discarded, which allows to
process high speed data streams.

4. The training procedure can be stopped at any time and
the prediction performance should not be worse than
the one obtained in batch mode.

These challenges pose the need for different algorithms than
those used for classical batch learning where data are stored in
finite and persistent data repositories, or those used for incre-
mental learning, as they do not focus on computational re-
strictions and do not consider dynamic changes [2]. To tackle
these challenges, several algorithms have been introduced in
the literature.

In the present paper, we present an overview of the main
basic algorithms that can be used for online learning in the
context of SHAR applications. The remaining of the paper is as
follows: In section 2 we describe characteristics and issues of
data streams. Section 3 presents the main baseline algorithms
used in online supervised stream classification. In section 4,
we list evaluation metrics commonly used in stream learning.
Section 5 summarizes existing applications in the context of

S IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 8, August-2018 32
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

SHAR. Popular open source frameworks are briefly intro-
duced in section 6 before concluding in section 7.

2 HAR DATA STREAM CHARACTERISTICS
2.1 Supervised Learning Framework
In SHAR applications, massive volumes of data are continu-
ously generated in the form of data streams. These streams are
potentially unbounded, ordered sequences of items which
arrive at constant or variable sampling rates.

SHAR applications use different learning models based on
supervised, unsupervised, semi-supervised and deep learning
approaches. We focus in the present paper on the supervised
learning models where the training data stream needs to be
labeled so that learning model is able to predict the future
similar data streams accurately. A data stream is the sequence
of data instances (Xt, yt) as presented in Fig. 1, arriving one at a
time drawn from an unknown probability distribution pt (X,
y); for time t= 1,2,3,...,T. where X is the set of attributes and y is
the corresponding class label. We assume that an online classi-
fier F receives the new input Xt at time step t and then predicts
its class label. After some time, actual class label yt is available
and is used by F to evaluate the predictive performance and to
provide additional information for training update. This
whole process will be repeated at following time steps. This
technique is used by most of supervised classification algo-
rithms.

Fig. 1 Online stream processing [4]

Three different ways of annotating data streams exist:
manual, automatic, and observational. The manual labeling
process of each chunk of the data stream is quite laborious and
time-consuming. Automatic labeling is performed through
application configuration at the time of data collection. There-
fore, automatic labeling is more comfortable compared to
manual approach. In the observational method, the learning
models are initially trained in automatic settings, however in
the case of discrepancies users are allowed to intervene by
manually labeling the data streams [5].

2.2 Concept Drifts
As data evolves over time, the concept about which data is
collected may change. This phenomenon is called Concept
Drift [6]. In the presence of drifts, the fundamental paradigm
of traditional data mining does not hold anymore since it as-
sumes a static and unknown distribution of training and test-
ing samples. Therefore, it is crucial to monitor the appearing
concept drifts in order to adapt the model to the changes ac-
cordingly. Moreover, an important characteristic of concept
drift relates to the rate at which it happens. The rate of a drift
can be sudden or gradual. The first type of drift occurs when a
source distribution of data stream is suddenly replaced by

another source distribution. The later type of drift is associated
with slower rate of changes in data streams [4]. Multiple algo-
rithms have been proposed for dealing with concept drifts in
data streams as we will see in section 3.

2.3 Class Imbalance
Class imbalance occurs when some target classes are not
equally represented. The difficulty in learning from imbal-
anced data is that the under-represented class cannot draw
equal attention to the learning algorithm. This can often cause
learning bias towards the highly-represented class, inducing
poor generalization for future prediction [3]. Since human
activities are generally imbalanced, learning difficulty in the
context of SHAR is certainly increased. On the other side, class
imbalance has attracted growing attention in data stream
learning in recent years and different algorithms have been
introduced to tackle this problem [3].

3. STREAM LEARNING ALGORITHMS
Two basic models of data streams exist: stationary, where
examples are drawn from a fixed although unknown probabil-
ity distribution, and non-stationary, where data can evolve
over time. Nonetheless, two distinct approaches exist in re-
search works: Active approaches which trigger changes in
classifiers when drifts are detected; and passive approaches
which continuously update the classifier regardless of appear-
ing drifts occurring in the data stream [4].

3.1 Stationary Stream Learning

3.1.1 Hoeffding Tree
Hulten and Domingos [7] proposed the Hoeffding Tree (HT)
algorithm presented in Fig. 2. They also refer to their imple-
mentation as VFDT, a Very Fast Decision Tree learner. In that
paper, the HT is the basic theoretical algorithm, while VFDT
introduces several enhancements for practical implementa-
tion. The HT novelty consisted of waiting for new instances to
arrive instead of reusing instances as it is the case for batch
learning approaches. The crucial decision needed to construct
a decision tree is when to split a node, and with which exam-
ple-discriminating test.

The most popular criteria for selecting decision tree split
tests is ‘information gain’ (G), which measures the average
amount of ‘purity’ that is gained in each subset of a split [8].
The strength of the HT method is that it has theoretical proofs
guaranteeing that HT algorithm can build trees of the same
quality as batch learned trees, if the number of instances need-
ed at a node when selecting a splitting attribute, is sufficient
enough. The name of this algorithm is derived from the
hoeffding bound, which states that with probability 1−δ, the
true mean of a random variable of range R will not differ from
the estimated mean after n independent observations by more
than ε, as defined in (1) [8]:

This bound justifies that a small sample can often be enough

∈= �𝑅
2𝑙𝑛(1/δ)

2𝑛
 (1)

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 8, August-2018 33
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

to choose an optimal splitting attribute. For any given potenti
al split, HT checks whether the difference of averaged infor-
mation gains of the top two attributes is likely to have a posi-
tive mean—if so, the winning attribute may be picked with a
certain degree of confidence. Thus the HT algorithm can deter-

Fig. 2. Hoeffding Tree algorithm

-mine, with high probability, the smallest number n of exam-
ples needed. Moreover, HT contributes in solving the uncer-
tainty in learning time since it consumes constant time per
instance.

3.1.2 Very Fast Decision Trees (VFDT)
Domingos et al. [7] modified the HT algorithm with an im-
proved method called VFDT, with the following characteris-
tics [9]:

1. Ties: when two attributes have similar split gain, the
improved method splits if the Hoeffding bound com-
puted is lower than a certain threshold parameter τ.

2. Speed: instead of computing the best attributes to split
every time a new instance arrives, it computes them
every time a number nmin of instances has arrived.

3. Memory utilization: it deactivates the least promising
nodes at the time of low memory and drops the poor
splitting attributes.

HT can grow slowly and performance can be poor initially, so
this extension provides an immediate boost to the learning
curve [9]. Although not suitable to handle drifts, HT or VFDT
are used as a base for many state-of-the-art drift learners. En-
hancements to the basic VFDT algorithm include methods of
limiting memory usage, the use of alternative bounds which
requires less examples for each split node, approaches to deal-
ing with numerical attributes, pruning mechanisms, and the
use of sliding windows or drift detectors to adapt the algo-
rithm to non-stationary settings [4].

3.2 Evolving Stream Learning
Most stream classification algorithms are capable of predict-
ing, detecting, and adapting to concept drifts. Drift adaptation
algorithms generally require data management and forgetting
mechanisms in order to deal with time-changing streams, so

that they are relevant to the most recent data. This usually
takes the form of a sliding window that forgets older examples
or a fading factor that decays the weight of older examples [4].

3.2.1 Concept-adapting Very Fast Decision Trees (CVFDT)
Hulten, Spencer, and Domingos [10] tackled the problem of
drift adaptation with an algorithm called Concept-adapting
Very Fast Decision Tree (CVFDT). CVFDT uses a sliding win-
dow system over VFDT. Unlike traditional batch learning, it
does not construct a new model each time from the beginning.
After a fixed number of new instances arrive, the relevant
statistics at every node are updated; and the Hoeffding
bounds are recomputed [11]. If the concept is changing, a bet-
ter splitting attribute is found as it has a higher gain and then
a new subtree is learned. The algorithm then waits for more
instances in order to confirm that the new learned subtree is of
better quality than the original one, which is then replaced
[11]. This technique is dependent on the window size. The size
should be neither too small, in order to store enough examples
to construct an accurate model, nor too large, in order to rep-
resent the concept accurately and continuously.

3.2.2 Hoeffding Adaptive Tree (HAT)
The Hoeffding Adaptive Tree (HAT) is an adaptive extension
to the HT that has theoretical guarantees and uses the ADWIN
algorithm [12] as a change detector and error estimator.
ADWIN is parameter- and assumption-free in the sense that it
automatically detects and adapts to the current rate of change.
Especially, ADWIN keeps a variable length window of length
W, but does not maintain the window explicitly; instead it
compresses it using only O(logW) memory and O(logW)
processing time per item, rather than the O(W) expected from
a naive implementation [12]. It is therefore interesting to know
the main contributions of HAT with respect to CVFDT such
as: 1) The alternate trees are created as soon as change is de-
tected, without having to wait after the change, for a fixed
number of new examples; 2) HAT replaces the old trees by the
new alternate trees as soon as there is evidence that they are
more accurate [12].
It can be said that the HAT adapts to the scale of time change
in the data, rather than having to rely on the a priori guesses
made by the user. In the case of noisy distributions with outli-
ers, the HAT and CVFDT will not fluctuate abruptly, since
they compute mean values that helps to smooth the computa-
tion [12].

3.2.3 Incremental Algorithms
Several traditional incremental classifiers were also adapted to
concept drift requirements. Sliding windows are usually em-
ployed as a forgetting mechanism. For example, the k Nearest
Neighbors (kNN) algorithms are naturally transformed to
incremental versions for use in the streaming case with differ-
ent techniques for selecting the limited subset of the most
useful examples for accurate predictions. The kNN classifier is
updated when concept drift is detected by discarding obsolete
examples from the knowledge base [2]. Neural Networks can
also be adapted to evolving data streams by dropping the
epoch protocol and presenting examples in one pass [2]. Other
algorithms use a structure similar to a decision tree to create

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 8, August-2018 34
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

rule-specific drift detectors [2].

3.2.4 Tackling Class Imbalance and Concept Drift
Simultaneously

Few works handling concept drift in class-imbalanced data
streams exist in the literature. Actually, most existing concept
drift detection methods are only designed for balanced data
streams. Since data streams in SHAR application scenario
naturally exhibit both phenomenons, we mention here a recent
interesting systematic study that tackles the combined chal-
lenge of concept drift in class-imbalanced data streams [3].
Authors assume that most existing papers that proposed new
concept drift detection methods for imbalanced data did not
consider the effect of class imbalance techniques on final pre-
diction and concept drift detection. In their paper, they pro-
vided a thorough review and an experimental insight into this
problem. Based on the analysis, general guidelines are pro-
posed for the development of an effective algorithm such as:

1. Is the class imbalance technique effective in predicting
minority-class as well as adaptive to class imbalance
changes?

2. Is the detection performance of the concept drift tech-
nique affected by the class imbalance technique?

3. How to make the class imbalance technique and con-
cept drift technique work together to achieve better
online prediction.

4 EVALUATION IN DATA STREAM
The data stream classification of SHAR performance is usually
assessed using evaluation measures identical to static super-
vised classification such as accuracy and F1-score. However,
unlike batch learning mode, repeated runs to estimate these
measures over the streaming data are not possible because of
the time and resource constraints. During stream classifica-
tion, the time required to process individual instances and the
average memory usage should be kept constant. For this rea-
son, training and testing time along with model memory size
have to be periodically monitored.

4.1 Holdout Evaluation
With no concept drift assumption, a single static held out set
should be sufficient for performance estimation as long as it is
independent and sufficiently large relative to the complexity
of the target concept. Test set sizes on the order of tens of
thousands of examples have previously been considered suffi-
cient [8]. To track model performance over time, the model
can be evaluated periodically, for example, after every one
million training examples. Therefore, periodic holdout method
gives a more accurate estimation of the accuracy on more re-
cent data. However, testing the model too often may signifi-
cantly slow the evaluation process, depending on the size of
the test set [8].

4.2 Prequential Evaluation
An alternate scheme of estimating the performance of stream
classifiers involves interleaving testing with training. Each
individual example is first used to test the classifier before it is
used for training (Fig. 1). Interleave train and test, also re-
ferred to as prequential (combination of words predictive and

sequential), follows the online learning protocol, where data
are evaluated as they are collected [8]. Whenever an example
is observed, the current model makes a prediction; when the
system receives feedback from the environment, the loss func-
tion can be computed. Such a procedure highlights the current
rather than overall performance, because simply calculating a
cumulative measure over the entire stream may lead to strong-
ly biased results and thus, may not detect appearing drifts in
the stream.

4.3 Evaluation Metrics
Below we list the most popular existing performance metrics.
Most of them should be selected and monitored during evalu-
ation of data stream classification depending on the data
stream characteristics:

1. Accuracy: the proportion of all correct predictions to
the total number of examples. Prequential accuracy is
popularly used with supervised learning.

2. G-Mean: the geometric mean of sensitivity and specific-
ity is often applied on class-imbalanced data streams to
avoid the bias of the overall accuracy.

3. Kappa Statistic: K = p0−pc/1−pc, where p0 is the classifi-
cation accuracy and pc is the probability of a random
classifier making a correct prediction.

4. Generalized Kappa Statistics: such as Kappa M for
dealing with imbalanced data streams.

5. Prequential AUC: suitable for streams with skewed dis-
tributions.

6. Memory consumption: the average memory require-
ments of each algorithm, and also their change over
time.

7. Update time: the amount of time that an algorithm re-
quires to update its structure and accommodate new
data from the stream. In an ideal situation, the update
time should be lower than the arrival time of a new.

8. Decision time: the amount of time that a model needs
to make a decision regarding new instances from the
stream. This phase usually comes before the updating
procedure takes place.

9. RAM hours: indicating processing time and memory
measured in a single metric.

5 ONLINE SHAR APPLICATIONS
5.1 MARS
MARS was the first SHAR system where the classifier is built
on the mobile device itself [13]. MARS processes the data
stream generated from accelerometer sensor and provides
personalization of learning models that are built based on
individual annotated data for certain physical activities. In-
cremental Naive Bayes is used to update an anytime model in
order to accommodate changes in the data stream.

5.2 Star
Star is an adaptive stream learning framework for SHAR [14].
It proposes an active learning technique well suited for choos-
ing only a small amount of data to be labeled. Then the system
is further refined with the selected true labeled data. Addi-
tionally, the framework uses incremental learning approach to

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 8, August-2018 35
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

handle concept drift over evolving streaming data in order to
fit a particular user or context. Star performs activity recogni-
tion over sliding windows using modeling components. The
experiments showed low computational cost and real time
recognition.

5.3 A2EL
A novel online scheme, combining principles of Active and
Adaptive Ensemble Learning (A2EL) for the context of SHAR
is proposed in [1]. The system architecture uses a weighted
Naïve Bayes classifier that can adapt to the incoming data of
the stream without a need for an explicit concept drift detec-
tor. To tackle the multi-class nature of activity recognition
problem, authors introduced a weighted combination for one-
vs-one decomposition to reconstruct the original multi-class
problem from two-class outputs. Moreover, the proposed
ensemble is enhanced with an active learning module to re-
duce the labeling cost over real-time senor data streams.

6 OPEN SOURCE FRAMEWORKS
Below we list the most two popular open source frameworks
that provide tools for data stream analysis and learning:

1. Massive Online Analysis (MOA) [15]: Related to the
WEKA project [16], MOA is implemented in Java. It
provides a collection of ML algorithms (e.g., classifica-
tion, clustering, outlier detection, and concept drift de-
tection) and evaluation methods (e.g., periodic holdout,
test-then-train, and prequential). MOA also provides a
benchmark suite of artificial data generators for the
MOA stream mining community which is growing ac-
tively. MOA can be found at
https://github.com/Waikato/moa.

2. Scalable Advanced Massive Online Analysis (SAMOA)
[17]: described as a framework as well as a library, it
combines stream mining and distributed computing for
big data streams. It features a pluggable architecture
that allows it to run on several distributed stream pro-
cessing engines. Like MOA, SAMOA is written in Java
and supports the most common machine learning tasks
such as classification and clustering. SAMOA can be
found at http://www.samoa-project.net/.

7 CONCLUSION
In essence, SHAR applications need to perform online learning
and classification on continuous data streams. The selection of
learning approaches highly impacts the performance of SHAR
applications regarding key cost criteria such as: energy,
memory and time efficiency. Online learning in the context of
SHAR must be performed to achieve multiple objectives
which include system level and application level performance
enhancements. The system level performance objectives in-
clude battery life enhancements in mobile devices. The appli-
cation level performance objectives include enhancements of
internal structures of learning models and their processing
behavior in terms of concept drift detection, tackling class
imbalance from uncertain data streams, model personalization
and optimization. The availability of open source frameworks

dedicated to big data stream online analysis should help fur-
ther developments in these challenging tasks.

REFERENCES
[1] Krawczyk, B., 2017. Active and adaptive ensemble learning for online

activity recognition from data streams. Knowledge-Based Sys-
tems, 138, pp.69-78.

[2] Krawczyk, B., Minku, L.L., Gama, J., Stefanowski, J. and Woźniak,
M., 2017. Ensemble learning for data stream analysis: A sur-
vey. Information Fusion, 37, pp.132-156.

[3] S. Wang, L. L. Minku, and X. Yao, “A systematic study of online class
imbalance learning with concept drift,” arXiv preprint
arXiv:1703.06683, 2017.

[4] Stefanowski J., Brzezinski D. (2017) Stream Classification. In: Sammut
C., Webb G.I. (eds) Encyclopedia of Machine Learning and Data Min-
ing. Springer, Boston, MA

[5] ur Rehman, M.H., Liew, C.S., Wah, T.Y. and Khan, M.K., 2017. To-
wards next-generation heterogeneous mobile data stream mining
applications: Opportunities, challenges, and future research direc-
tions. Journal of Network and Computer Applications, 79, pp.1-24.

[6] L. L. Minku, “Online ensemble learning in the presence of concept
drift,” Ph.D. dissertation, School of Computer Science, The Universi-
ty of Birmingham, 2010.

[7] Pedro Domingos and Geoff Hulten. Mining high-speed data streams.
In Knowledge Discovery and Data Mining, pages 71–80, 2000.

[8] Albert Bifet, Geoff Holmes and Richard Kirkby, DATA STREAM
MINING: A Practical Approach, MAY 2011.
http://jwijffels.github.io/RMOA/MOA_2014_04/doc/pdf/Stream
Mining.pdf

[9] [Online]:https://www.cms.waikato.ac.nz/~abifet/book/chapter_6.ht
m. Last accessed on June,10 2018.

[10] Hulten, G., Spencer, L., Domingos, P.: Mining time changing data
streams. In: KDD, pp. 97–106. ACM (2001)

[11] T.R.Hoens, R. Polikar, N.V. Chawla, “Learning from streaming data
with concept drift and imbalance: An overview”, Prog.Artif.Intell.,
vol. 1, pp. 89-101, Apr. 2012.

[12] Bifet, A., Zhang, J., Fan, W., He, C., Zhang, J., Qian, J., Holmes, G.
and Pfahringer, B., 2017, August. Extremely fast decision tree mining
for evolving data streams. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Min-
ing (pp. 1733-1742). ACM.

[13] Gomes, J.B., Krishnaswamy, S., Gaber, M.M., Sousa, P.A.,
Menasalvas, E., 2012b. Mars: a personalised mobile activity recogni-
tion system. In: Mobile Data Management (MDM), 2012 IEEE Pro-
ceedings of the 13th International Conference on, July 23- 26,
Balngluru, India. IEEE, 2012, pp. 316–319.

[14] Abdallah, Z.S., Gaber, M.M., Srinivasan, B., & Krishnaswamy, S.
(2015). Adaptive mobile activity recognition system with evolving
data streams. Neurocomputing, 150, 304-317.

[15] Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard
Pfahringer. 2010b. MOA: Massive Online Analysis. The Journal of
Machine Learning Research 11 (2010), 1601–1604.

[16] Eibe Frank, Mark A. Hall, and Ian H. Witten (2016). The WEKA
Workbench. Online Appendix for "Data Mining: Practical Machine
Learning Tools and Techniques", Morgan Kaufmann, Fourth Edition,
2016.

[17] Gianmarco De Francisci Morales and Albert Bifet. 2015. SAMOA:
Scalable Advanced Massive Online Analysis. Journal of Machine

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 8, August-2018 36
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

Learning Research 16 (2015), 149–153.

IJSER

http://www.ijser.org/

	1 Introduction
	2 HAR Data Stream Characteristics
	2.1 Supervised Learning Framework
	2.2 Concept Drifts
	2.3 Class Imbalance

	3. Stream Learning Algorithms
	3.1 Stationary Stream Learning
	3.1.1 Hoeffding Tree
	/
	Fig. 2. Hoeffding Tree algorithm
	3.1.2 Very Fast Decision Trees (VFDT)

	3.2 Evolving Stream Learning
	3.2.1 Concept-adapting Very Fast Decision Trees (CVFDT)
	3.2.2 Hoeffding Adaptive Tree (HAT)
	3.2.3 Incremental Algorithms
	3.2.4 Tackling Class Imbalance and Concept Drift Simultaneously

	4 Evaluation in data stream
	4.1 Holdout Evaluation
	4.2 Prequential Evaluation

	5 Online shar applications
	6 Open Source Frameworks
	7 CONCLUSION
	References

